Skip to contents

Assessment of cumulative effects using the Halpern et al. 2008 method.

Usage

cea(drivers, vc, sensitivity, exportAs = "list")

get_cekm_cea(dat, vc)

Arguments

drivers

distribution and intensity of environmental drivers as stars object

vc

distribution of valued components as stars object

sensitivity

matrix of environmental drivers and valued component, with same name as those used in drivers and vc

exportAs

string, the type of object that should be created, either a "list" or a "stars" object.

dat

TODO

Functions

  • get_cekm_cea(): get effects per km2

Examples

# Data
drivers <- rcea:::drivers
vc <- rcea:::vc
sensitivity <- rcea:::sensitivity

# Species-scale effects
(halpern <- cea(drivers, vc, sensitivity, "stars"))
#> stars object with 3 dimensions and 20 attributes
#> attribute(s):
#>             Min.     1st Qu.     Median      Mean   3rd Qu.      Max.  NA's
#> vc1   0.00000000 0.197844533 0.34959492 0.3374289 0.4932443 0.9801095 19256
#> vc2   0.00000000 0.000000000 0.11506835 0.1974660 0.3511900 0.9098666 19357
#> vc3   0.00000000 0.028556899 0.05427342 0.2055286 0.3892334 0.9999287 18655
#> vc4   0.00000000 0.152847296 0.39069861 0.3570992 0.5125498 0.9547808 18527
#> vc5   0.00000000 0.000000000 0.27112643 0.2837859 0.4618074 0.9093915 18953
#> vc6   0.00000000 0.000000000 0.39358294 0.3081420 0.5254207 0.8704866 18680
#> vc7   0.01297907 0.125280091 0.25660111 0.2799213 0.4276007 0.8765720 18948
#> vc8   0.00000000 0.076629590 0.28697593 0.3023585 0.5139304 0.9302585 19468
#> vc9   0.00000000 0.108950922 0.22388530 0.2683110 0.4175093 0.8018385 18613
#> vc10  0.00000000 0.131755392 0.25594767 0.3054904 0.4745609 0.9928748 18404
#> vc11  0.00000000 0.136290943 0.26145624 0.2902475 0.4435404 0.9609001 17697
#> vc12  0.00000000 0.024573000 0.35095529 0.2977374 0.4931013 0.8410465 18929
#> vc13  0.00000000 0.000000000 0.06812157 0.1318422 0.2460166 0.4855436 18840
#> vc14  0.00000000 0.001754965 0.14231378 0.2371141 0.4687777 0.8972964 18938
#> vc15  0.00000000 0.103734955 0.22250580 0.2872501 0.4796972 0.9036774 19300
#> vc16  0.02732438 0.119494253 0.28250320 0.3018985 0.4581889 0.8433375 18759
#> vc17  0.00000000 0.000000000 0.13293700 0.1900736 0.2629435 0.9295225 18601
#> vc18  0.00000000 0.059879067 0.10645798 0.1628473 0.1921856 0.8944353 18169
#> vc19  0.00000000 0.015881054 0.29676611 0.2664306 0.4466082 0.8374260 17974
#> vc20  0.00000000 0.000000000 0.11460514 0.1906253 0.2842038 0.8975917 18437
#> dimension(s):
#>         from to offset delta              values x/y
#> x          1 45   -100     5                NULL [x]
#> y          1 45    125    -5                NULL [y]
#> drivers    1 10     NA    NA driver1,...,driver9    
plot(halpern)

halpern <- merge(halpern, name = "vc") |>
  split("drivers")
plot(halpern)

# do not work
# get_cekm_cea(halpern, vc)